8,328 research outputs found

    3D Finite Volume Simulation of Accretion Discs with Spiral Shocks

    Get PDF
    We perform 2D and 3D numerical simulations of an accretion disc in a close binary system using the Simplified Flux vector Splitting (SFS) finite volume method. In our calculations, gas is assumed to be the ideal one, and we calculate the cases with gamma=1.01, 1.05, 1.1 and 1.2. The mass ratio of the mass losing star to the mass accreting star is unity. Our results show that spiral shocks are formed on the accretion disc in all cases. In 2D calculations we find that the smaller gamma is, the more tightly the spiral winds. We observe this trend in 3D calculations as well in somewhat weaker sense.Comment: 2 pages, LaTeX with 2 ps figures using crckapb.sty. To appear in the Proceedings of Numerical Astrophysics 1998, Tokyo, Japan, 10-13 March, 1998, eds. S. M. Miyama, K. Tomisaka and T. Hanawa (Kluwer Academic Publishers

    Spiral Structure in IP Peg: Confronting Theory and Observations

    Get PDF
    The first convincing piece of evidence of spiral structure in the accretion disc in IP Pegasi was found by Steeghs et al. (1997). We performed two kinds of 2D hydrodynamic simulations, a SFS finite volume scheme and a SPH scheme, with a mass ratio of 0.5. Both results agreed well with each other. We constructed Doppler maps and line flux-binary phase relations based on density distributions, the results agreeing well with those obtained by observation.Comment: 4 pages, LaTeX with 2 ps figures using crckapb.sty. To appear in the Proceedings of Numerical Astrophysics 1998, Tokyo, Japan, 10-13 March, 1998, eds. S. M. Miyama, K. Tomisaka and T. Hanawa (Kluwer Academic Publishers

    Numerical Computation of Thermoelectric and Thermomagnetic Effects

    Full text link
    Phenomenological equations describing the Seebeck, Hall, Nernst, Peltier, Ettingshausen, and Righi-Leduc effects are numerically solved for the temperature, electric current, and electrochemical potential distributions of semiconductors under magnetic field. The results are compared to experiments.Comment: 4 pages, 7 figures. Submitted to Proceedings of XVII International Conference on Thermoelectrics (ICT98), 1998 Nagoya, Japa

    A survey of the three-dimensional high Reynolds number transonic wind tunnel

    Get PDF
    The facilities for aerodynamic testing of airplane models at transonic speeds and high Reynolds numbers are surveyed. The need for high Reynolds number testing is reviewed, using some experimental results. Some approaches to high Reynolds number testing such as the cryogenic wind tunnel, the induction driven wind tunnel, the Ludwieg tube, the Evans clean tunnel and the hydraulic driven wind tunnel are described. The level of development of high Reynolds number testing facilities in Japan is discussed

    Inverse versus Normal NiAs Structure as High-Pressure Phase of FeO and MnO

    Full text link
    The high-pressure phases of FeO and MnO were studied by the first principles calculations. The present theoretical study predicts that the high-pressure phase of MnO is a metallic normal B8 structure (nB8), while that of FeO should take the inverse B8 structure (iB8). The novel feature of the unique high-pressure phase of stoichiometric FeO is that the system should be a band insulator in the ordered antiferromagnetic (AF) state and that the existence of a band gap leads to special stability of the phase. The observed metallicity of the high-pressure and high-temperature phase of FeO may be caused by the loss of AF order and also by the itinerant carriers created by non-stoichiometry. Analysis of x-ray diffraction experiments provides a further support to the present theoretical prediction for both FeO and MnO. Strong stability of the high-pressure phase of FeO will imply possible important roles in Earth's core.Comment: 7 pages, 3 figures and 1 table; submitted to "Nature

    The Dense Plasma Torus Around the Nucleus of an Active Galaxy NGC 1052

    Full text link
    A subparsec-scale dense plasma torus around an active galactic nucleus (AGN) is unveiled. We report on very-long-baseline interferometry (VLBI) observations at 2.3, 8.4, and 15.4 GHz towards the active galaxy NGC 1052. The convex spectra of the double-sided jets and the nucleus imply that synchrotron emission is obscured through free--free absorption (FFA) by the foreground cold dense plasma. A trichromatic image was produced to illustrate the distribution of the FFA opacity. We found a central condensation of the plasma which covers about 0.1 pc and 0.7 pc of the approaching and receding jets, respectively. A simple explanation for the asymmetric distribution is the existence of a thick plasma torus perpendicular to the jets. We also found an ambient FFA absorber, whose density profile can be ascribed to a spherical distribution of the isothermal King model. The coexistence of torus-like and spherical distributions of the plasma suggests a transition from radial accretion to rotational accretion around the nucleus.Comment: 10 pages, to appear in Publ. Astron. Soc. Japan, vol.53, No.2 (2001

    Results of a Search for Paraphotons with Intense X-ray Beams at SPring-8

    Full text link
    A search for paraphotons, or hidden U(1) gauge bosons, is performed using an intense X-ray beamline at SPring--8. "Light Shining through a Wall" technique is used in this search. No excess of events above background is observed. A stringent constraint is obtained on the photon--paraphoton mixing angle, χ<8.06×105 (95\chi < 8.06\times 10^{-5}\ (95%\ {\rm C.L.}) for 0.04 eV<mγ<26 keV0.04\ {\rm eV}<m_{\gamma^{\prime}} < 26\ {\rm keV}.Comment: 10 pages, 4 figure
    corecore